Pre-class Warm-up!!!	The quiz tomorrow is on the material
How many ways can you think of to describe a curve in R^2?	from both last week and the week before. I think it was sections
a. ≥4	8.3 6.1 6.2 1.4 put / don't
b. 3	remember.
c. 2	
d. 1	
e. 0	

7.3 Parametrized Surfaces.

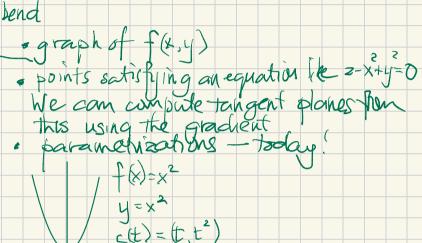
We learn:

- · what is a surface. It is a sheet that may ben
- we have 3 ways to describe a surface
- How to compute the tangent plane at a point from a parametrization.

Review: we can sometimes describe a curve in 3 ways:

- the graph of a function, like the graph of $f(x) = x^2$
- The solution set of some equations, like $y = x^2$
- by a parametrization, like $c(t) = (t, t^2)$

We know how to convert between these and how to compute tangent lines to curves.



Definition. A parametrization of a surface in
$$\mathbb{R}^3$$
 is a function $\mathbb{C}^2 \to \mathbb{R}^3$

R^3 is a function
$$\Phi: \mathbb{R}^2 \to \mathbb{R}^3$$

 $\Phi(u,v) = (x(u,v), y(u,v), z(u,v))$
Examples: The graph of $f(x,y) = x^2 - y^2$

Examples: The graph of
$$\chi(x,y) = \chi(x) = \chi(x)$$

has a parametrization $(u,v) = (u,v,u^2-v^2)$

is the set of points satisfying an equation $Z = \chi^2 - \mu^2$

We should recognize parametrizations of a sphere, and of a cone unit

$$\mathcal{Q}(u,v) \\
= (sinvosu, sinv sinu, cosv)$$

= (u cosv usinv, u

$$= (u \cos v, u \sin v, u)$$
Think $u = r$, $u \le 0$, $v = \theta$, $0 \le v < 2\pi$

Tangent vectors

Recall: for a path $c: R \rightarrow R^3$ the velocity vector c' points tangentially to the curve. $c'(t) = \begin{pmatrix} c \\ at \end{pmatrix}, \begin{pmatrix} c \\ at \end{pmatrix}$

$$Q(u,v) = (x(u,v), y(u,v), z(u,v))$$

we get two vectors tangential to the surface:

$$T_{u} = \begin{pmatrix} \partial x & \partial y & \partial z \\ \partial u & \partial u & \partial u \end{pmatrix}$$

Example: the parametrization of the cone:

Phi
$$(u,v) = (u \cos(v), u \sin(v), u),$$

 $u \ge 0, 0 \le v \le 2\pi$

$$T_u = (\cos v, \sin v, 1)$$

$$T_{v} = (-u \sin v, u \cos v, 0)$$

We get a normal vector $T_{u} \times T_{v} = (-u \omega_{sv} - u \sin v, u)$

we construct the tongent plane
-4 corv (x - 4 cors(v)) + . + .

We always want the parametrization to be regular, meaning $T_u \times T_v \neq 0$

